
姓名: 田新诚
性别: 男
民族: 汉族
学历: 博士
职称: 教授
导师信息:博士生导师
职务: 机器人研究中心主任
学科一:控制理论与控制工程
学科二:模式识别与智能系统
所在院系:控制学院机器人研究中心
研究方向:智能机器人、机电系统智能控制、制造大数据采集与分析
通信地址:济南市经十路17923号 山东大学千佛山校区控制科学与工程学院
研究方向:
智能机器人、机电系统智能控制、制造大数据采集与分析
近年来完成的部分科研项目:
1. 相贯曲线自动焊接数控装备技术与应用示范(国家863主题课题-2012AA041307);
2. 可转位刀片周边五轴数控精密磨床(“高档数控机床与基础制造装备”国家科技重大专项2010ZX04001-161);
3. 耐磨蚀组合涂层等离子熔射制备及表征技术(国家863主题课题-2015AA034404 )
4. 管道内壁等离子原位反应复合处理自动化生产线(国家863课题);
5. 可转位刀片周边精密磨削数控系统(山东省科技发展计划重大课题-2014CGZH0807)
6. 山东省机器人与智能装备公共技术服务平台(国际信息通信创新园JNGX(XL)-GK-2015);
7. 空间相贯曲线自动焊接计算机数控技术研究与开发(山东省科技发展计划);
8. 可转位刀片周边高速精密磨削自动数控编程关键技术(济南市高校院所科技计划);
9. 装载机专用焊接机器人工作站装备研制(企业课题);
10.刀片周边磨削计算机数控系统(国家“八五”攻关课题子课题);
11.高性能计算机数控技术(山东省优秀中青年基金);
12.卡车后桥自动焊接计算机数控技术(山东省优秀中青年基金);
13. 加工误差智能补偿算法研究与仿真(中国博士后科学基金);
14. 桥壳纵缝计算机数控焊接系统(企业课题);
15. DGR-4T发动机缸体缸套等离子淬火数控系统(企业课题)。
16.风洞计算机测控系统。
17.集装箱波纹板自动焊接技术与系统(企业课题)。
18.轧花机自动调速控制(企业课题)。
19.太阳能照明智能控制系统研究(温州市科技发展计划);
目前主持的主要科研项目:
1.柔性伺服铆枪系统研究(国家重点研发计划)
2.协作型机器人人体碰撞安全评估系统(国家重点研发计划)
3.基于工业物联网的发动机制造过程实时数据采集与处理技术(山东省重大科技创新工程)
4.高品质发动机制造大数据空间构建及数据分析与应用(山东省重大科技创新工程2019JZZY010441)
5.电力母排CAD/CAM系统研究
获奖情况:
1.高通量耐磨蚀抗热震组合材料创新技术及产业化,山东省科技进步一等奖,2018年;
2.管道内壁等离子原位反应复合处理设备与工艺,山东省技术发明二等奖,2007年;
3.等离子原位反应复合处理设备与工艺,山东省科技进步二等奖,2006年;
4.高性能周边磨削加工计算机数控系统,山东省科技进步奖三等奖,2005年;
5.陶瓷刀片数控加工方法及工艺研究,山东省科技进步奖三等奖,2002年。
6.2MBK7125型可转位刀片周边磨床,山东省科技进步奖三等奖,1998年。
7.等离子原位反应复合处理设备与工艺,山东高等学校优秀科研成果二等奖,2006年。
近期发表的主要论文:
[1] Xiaolong Xu, Yujie Sun, Xincheng Tian*, Lelai Zhou*. A Novel Joint Angle Estimation Method for Serial Manipulator Using MEMS Sensors, IEEE Transactions on Industrial Electronics, 2020.( SCI/EI, IF=7.503)
[2] Xiaolong Xu, Yujie Sun, Xincheng Tian*, Lelai Zhou*, Yibin Li. A proposed attitude estimator with reliability test criteria for sensor data fusion. Measurement, 2020, vol. 150. (SCI/EI, IF=2.791)
[3] Xiaolong Xu, Xincheng Tian*, Lelai Zhou*, Yibin Li. A decision-tree based multiple-model UKF for attitude estimation using low-cost MEMS MARG sensor arrays. Measurement, 2019, vol. 135, pp. 355-367. (SCI/EI, IF=2.791)
[4] Yan Liu, Qiu Tang, Xincheng Tian*. A discrete method of sphere-pipe intersecting curve for robot welding by offline programming. Robotics and Computer-Integrated Manufacturing, 2019, 57: 404-411. (SCI/EI, IF= 4.392)
[5] Liu Yan, Liu Ya, Tian Xincheng*, Trajectory and velocity planning of the robot for sphere-pipe intersection hole cutting with single-Y welding groove. Robotics and Computer-Integrated Manufacturing, 56 (2019) 244–253. (SCI/EI, IF= 4.392)
[6] Liu Yan, Liu Jiang, Tian Xincheng*, An approach to the path planning of intersecting pipes weld seam with the welding robot based on non-ideal models. Robotics and Computer-Integrated Manufacturing, 55 (2019) 96–108. (SCI/EI, IF= 4.392)
[7] Yan Liu, Xincheng Tian*. Robot path planning with two-axis positioner for non-ideal sphere-pipe joint welding based on laser scanning. International Journal of Advanced Manufacturing Technology, 2019, 105(4): 1295-1310. (SCI/EI, IF= 2.496)
[8] Yan Liu, Lijuan Ren, Xincheng Tian*. A robot welding approach for the sphere-pipe joints with swing and multi-layer planning. International Journal of Advanced Manufacturing Technology, 2019, 105(3): 265-278. (SCI/EI, IF= 2.496)
[9] Yan Liu, Lei Shi, Xincheng Tian*, Deviation quantification of the intersecting curve weld seam based on non-ideal models. International Journal of Advanced Manufacturing Technology, 2018, 97(1-4): 1347–1361. (SCI/EI, IF= 2.496)
[10]Xiaolong Xu, Xincheng Tian*, Lelai Zhou. A Robust Incremental-Quaternion-Based Angle and Axis Estimation Algorithm of a Single-Axis Rotation Using MARG Sensors, IEEE Access, 2018, vol. 6, pp. 42605-42615. SCI/EI, IF=4.098
[11]Yan Liu, Lei Shi, Xincheng Tian*. Weld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve welding. Int J Adv Manuf Technol, 2018, 95(5-8):2457-2471. (SCI/EI, IF= 2.496)
[12]Yan Liu, Lei Shi, Xincheng Tian*. Plasma cutting torch trajectory planning for main pipe hole cutting with welding groove and root face. Int J Adv Manuf Technol, 2017, 93(9-12):4329-4343. (SCI/EI, IF= 2.496)
[13]Lei Shi, Xincheng Tian*, Plasma beam radius compensation-integrated torch path planning for CNC pipe hole cutting with welding groove. International Journal of Advanced Manufacturing Technology. 2017, 88:1971–1981. (SCI/EI, IF= 2.496)
[14]Lei Shi, Xincheng Tian*, Chenghui Zhang, Automatic programming for industrial robot to weld intersecting pipes,International Journal of Advanced Manufacturing Technology, 2015, 81(9): 2099-2107. (SCI/EI, IF= 2.496)
[15]Lei Shi, Xincheng Tian*, Automation of main pipe-rotating welding scheme for intersecting pipes,International Journal of Advanced Manufacturing Technology, 2015, 77(5): 955–964. (SCI/EI, IF= 2.496)
[16]Tiantian Chen, Xincheng Tian*, Dimensional error prediction and its intelligent soft pre-compensation in batch manufacture, International Journal of Advanced Manufacturing Technology, 2015 77(1): 281-288. (SCI/EI, IF= 2.496)
[17]Tiantian Chen, Xincheng Tian*, An intelligent self-learning method for dimensional error pre-compensation in CNC grinding, International Journal of Advanced Manufacturing Technology, 2014, 75(9): 1349–1356. (SCI/EI, IF= 2.496)
[18]Tiantian Chen, Xincheng Tian*, Yan Li, Dimensional accuracy enhancement in CNC batch grinding through fractional order iterative learning compensation, Advances in Mechanical Engineering, 2014, 2014(8):1-9. (SCI/EI)
[19]Tiantian Chen, Xincheng Tian*, A methodology for dimensional error intelligent compensation in indexable insert grinding, ICIC Express Letters, Part B: Applications. 2014, 5(5): 1199-1205. (EI)
[20]Tiantian Chen, Xincheng Tian*, Yan Li, Intelligent dimensional error pre-compensation in CNC grinding using iterative learning approach,International Journal of Advanced Manufacturing Technology. 2013, 67(5):1825–1832. (SCI/EI, IF= 2.496)
[21]Yan Lü,Xincheng Tian*,Jun Liang, Track Control in Automated Welding of Saddle Curve, Journal of Scientific & Industrial Research. 2010, 69(11):811-817. (SCI)
[22]Xincheng Tian*,J. P. Huissoon,Qing Xu,Bo Peng,Dimensional error analysis and its intelligent pre-compensation in CNC grinding, International Journal of Advanced Manufacturing Technology, 2008, 36(1): 28-33. (SCI/EI, IF= 2.496)
[23]Xincheng Tian*, Interpolation of Saddle-Shaped Trajectory in Non-Cartesian Coordinate System,Advanced Science Letters,July 2013.
[24]Xincheng Tian*,Yan Lv, Trajectory Control in Automated Welding of Tubular Joints, Applied Mechanics & Materials, 2010, 26-28: 967-970. (EI)
[25]Xincheng Tian*, Trajectory Interpolation in CNC Grinding of Indexable Inserts, International Journal of Advanced Materials Research, 2009.12. (EI收录)
[26]Curve Fitting Approach of Saddle-Shaped Curve for Automated Welding/Cutting,Advanced Materials Research Vols. 211-212 (2011) pp 935-938. (EI收录)
[27]A Novel CNC Interpolation Algorithm for Saddle Curve,Advanced Materials Research Vols. 219-220 (2011) pp 239-242. (EI收录)
[28]Novel Trajectory Control Algorithm for Intersection Seam Automated Welding, Advanced Materials Research Vols. 219-220 (2011) pp 284-287. (EI收录)
[29] 石磊,田新诚*,主管旋转式相贯曲线自动焊接模型与仿真,焊接学报,2015,36(6):5-8(EI收录)
[30] 田新诚,一种新的数控磨削加工两坐标联动轨迹插补算法,中国机械工程,第15卷第2期,2004年1月,(EI收录)。
[31] 亓化振,田新诚*,基于角度逼近的马鞍形曲线自动焊接插补算法,焊接学报,第28卷第3期,2007年3月,(EI收录)。
[32] 吕燕,田新诚,马鞍型曲线自动焊接四轴联动插补算法[J].焊接学报.2009,30(5),(EI收录)。